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transformations, and thus may be called ‘mirrorfolds’. Starting with arbitrary (compact or

non-compact) Gepner models for the K3 fiber, we construct modular invariant partition
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yield non-supersymmetric string vacua. They exhibit IR instability due to winding tachyon

condensation which is similar to the Scherk-Schwarz type circle compactification. When the

fiber SCFT is non-compact (say, the ALE space in the simplest case), on the other hand,

both supersymmetric and non-supersymmetric vacua can be constructed. The non-compact

non-supersymmetric mirrorfolds can get stabilised at the level of string perturbation theory.

We also find that in the non-compact supersymmeric mirrorfolds D-branes are always non-

BPS. These D-branes can get stabilized against both open- and closed-string marginal
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1. Introduction and summary

String theory on non-geometric backgrounds has recently been receiving much attention. A

particularly accessible class of non-geometric backgrounds is those formulated as fibrations

over a base manifold in which the transition functions are built from discrete duality trans-

formations of string theory besides diffeomorphisms. In such models the moduli space of

the fibre, when going around non-trivial cycles on the base manifold, picks up monodromies

in general; for this reason these string vacua are often called ‘monodrofolds.’ In particular,

monodrofolds constructed from T-duality transformations are called ‘T-folds’ [1]. Known

examples of T-folds include those arising from flux-compactified type II strings combined

with T-duality. These are non-geometric in the sense that while they are locally equipped

with geometric structures, globally they are not. It is now increasingly recognised that

such backgrounds constitute a natural and essential part of string vacua. For recent topics

and developments of non-geometric backgrounds in string theory, see e.g. [2] and references

therein.

– 1 –



J
H
E
P
0
2
(
2
0
0
8
)
0
6
5

In studying non-geometric backgrounds that do not necessarily allow intuitive geomet-

ric picture, approach by world-sheet conformal field theory (CFT) proves to be extremely

powerful. From CFT one may extract various essential information. Firstly, consistency of

the string vacua can be examined through modular invariance, locality of vertex operators,

etc. One may also find spectra of physical excitations, presence/absence of space-time su-

persymmetry (SUSY), as well as stability of the system. While limited to the lowest order

in the string coupling expansion, CFT gives all-order results in the α′-correction beyond

the supergravity approximation. By now, several models of T-folds have been analysed

using CFT [3 – 5]. Detailed study of D-branes in simple T-fold models was also carried out

by the present authors in [6], where consistent D-branes on these backgrounds are explicitly

constructed in boundary CFT, supporting and supplementing previous observations of [7].

In CFT, T-folds are typically realised as asymmetric interpolating orbifolds. They

provide interesting models of string vacua as they generally involve less moduli. Moreover,

construction of such CFT models is delicate in general (e.g. achieving modular invariance),

giving rise to stringent consistency checks. One may also hope for breaking SUSY while

keeping attractive features of SUSY intact in such models, as discussed in [8] based on

toroidal models. In the present article we apply techniques of interpolating orbifold CFT

to more non-trivial backgrounds of superstring theory. The models we shall study are

K3 fibrations over an S1 base with the mirror twist, which we call ‘mirrorfolds,’ following

the precedent examples of the monodrofolds and T-folds. These are modelled in CFT

as interpolating orbifolds of K3 × S1 with the mirror involution acting on the K3 fiber,

which may be seen as extensions of the simplest T-folds mentioned above. Note that such

orbifolds are possible since K3 is self-dual for the mirror symmetry. We shall see that

the CFT machinery works well for these non-trivial curved fiber spaces. Similar models of

string theory compactification involving K3 twists are investigated also in [9].

Main outcomes of this paper are summarized as follows:

• We start by considering an arbitrary Gepner model [10] to describe the K3 fiber.

Besides the standard Gepner models for compact spaces we also treat non-compact

models in which gravity decouples [11 – 13].1 We elaborate on the construction of

modular invariant partition functions in full generality. Careful fixing of phase am-

biguity that appears in the mirror involution turns out to be crucial for the modular

invariance.

• In the case of the compact K3 fiber, the mirrorfolds yield only non-SUSY string

vacua. They exhibit IR instability caused by winding tachyon condensation which is

similar to the Scherk-Schwarz type circle compactification [15].

• In the case of the non-compact K3 fiber (e.g. the ALE spaces), both SUSY and non-

SUSY vacua can be constructed. The non-compact, non-SUSY mirrorfolds can be

stabilised at the level of perturbative string. Namely, they get stable against arbitrary

marginal deformations of normalizable modes.

1A recent study of the non-compact Gepner-like models has been given in [14].
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• The vacua of non-compact SUSY mirrorfolds are stable, of course. However, once

putting an arbitrary consistent D-brane on these backgrounds, the space-time SUSY

is inevitably broken. We examine the stability of such non-SUSY vacua, and find

that the vacuum may become free from instability caused by open string tachyons.

This paper is organized as follows. In section 2, starting with a brief review on the

Gepner construction of K3, we discuss the construction of modular invariant partition

functions describing string theory on the mirrorfolds with compact K3 fibrations. In section

3, we study the models with non-compact fibrations. There are several common features

in the compact and non-compact mirrorfolds, but there are also remarkable differences.

In section 4, we present discussions and outlook for future work. In the appendices we

summarize our notations of modular functions and various character formulas appearing

in the main text.

We use the convention of α′ = 1 throughout this paper.

2. Mirrorfolds with K3 fibrations

The superconformal system which we focus on in this paper is the interpolating orbifolds

of the type

K3 × S1
2R

σmirror ⊗ T2πR
, (2.1)

where σmirror denotes the mirror involution acting on the K3 ‘fiber’, and T2πR denotes the

half-shift (let the radius of S1 be 2R) along the ‘base’ S1-direction:

T2πR : Y 7−→ Y + 2πR . (2.2)

This conformal system is expected to describe the K3-fibration over the S1-base of radius R

(reduced by the half-shift T2πR), twisted by the mirror-transformation on K3. We assume

an arbitrary Gepner model for the K3 fiber. We will also work with non-compact models

in which gravity decouples, in the next section.

2.1 Preliminary: Gepner models for K3

In order to establish notations we start with a brief review of the Gepner construction of

K3:

[Mk1 ⊗ · · · ⊗ Mkr ] |ZN -orbifold ,
r∑

i=1

ki

ki + 2
= 2 , (2.3)

where Mk denotes the N = 2 minimal model of level k (ĉ ≡ c
3 = k

k+2), and we set

N ≡ L.C.M.{ki + 2 ; i = 1, . . . , r} . (2.4)

The ZN -orbifold means to project the Hilbert space onto the subspace with integer U(1)R-

charge. To keep consistency of the conformal field theory, this projection has to be accom-

panied by the twisted sectors generated by integral spectral flows [16].

– 3 –
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The modular invariant of the model (2.3) generically has the following form (assuming

the diagonal modular invariant with respect to the spin structure):

ZK3(τ, τ̄ ; z, z̄) =
e
−4π

z2
2

τ2

2N

∑

I,Ĩ

∑

α

NI,ĨF
(α)
I (τ, z)F

(α)

Ĩ
(τ, z) , (2.5)

where the sum of α runs over the spin structures, and the angle variables z, z̄ couple

with the total U(1)R-charge. The factor e−4πz2
2/τ2 (τ2 ≡ Imτ , z2 ≡ Imz) is necessary for

preserving the modular invariance for z 6= 0; it is related to the chiral anomaly of the total

U(1)R current. The chiral blocks F
(α)
I (τ, z) are explicitly written as ‘integral spectral flow

orbits’ [16] as

F
(NS)
I (τ, z) =

1

N

∑

a,b∈ZN

qa2
y2a

r∏

i=1

ch
(NS),ki

ℓi,mi
(τ, z + aτ + b) , (2.6)

for the NS sector. Here I is the collective index: I ≡ {(ℓ1,m1), . . . , (ℓr,mr)}, and likewise

for Ĩ (0 ≤ ℓi ≤ ki, mi ∈ Z2(ki+2), ℓi +mi ∈ 2Z). The characters ch
(NS),ki

ℓi,mi
(τ, z) of the N = 2

minimal models Mki
are presented in appendix A. The orbits of the other spin structures

are defined with 1/2-spectral flows:2

F
( fNS)
I (τ, z) = F

(NS)
I

(
τ, z +

1

2

)
,

F
(R)
I (τ, z) = q

1
4 yF

(NS)
I

(
τ, z +

τ

2

)
,

F
(eR)
I (τ, z) = q

1
4 yF

(NS)
I

(
τ, z +

τ

2
+

1

2

)
, (2.7)

The multiplicity NI,Ĩ is simply,3

NI,Ĩ ≡
r∏

i=1

1

2

(
δℓi,ℓ̃i

δ
(2(ki+2))
mi,m̃i

+ δℓi,ki−ℓ̃i
δ
(2(ki+2))
mi,m̃i+ki+2

)
. (2.8)

The summation over b ∈ ZN in (2.6) projects out states that do not satisfy the U(1)-charge

integrality condition,

Q(I) ≡
r∑

i=1

mi

ki + 2
∈ Z , (2.9)

2In the convention taken here, we do not include extra phase factors originating from the U(1)R-charge.

Consequently, our chiral blocks of the fNS and eR sectors have slightly unnatural q-expansions for some I ,

such as

F
(gNS)
I (τ ) = −q

hI + a1q
hI+1 + a2q

hI+2 · · · .

Also, the collective index I ≡ {(ℓ1, m1), . . . , (ℓr, mr)} encodes quantum numbers of the NS sector even in

F
(R)
I and F

( eR)
I . An advantage of this convention is that the modular S-matrices are common to all spin

structures.
3We start with the A-type modular invariant for each minimal model Mki

for simplicity. The second

term in (2.8) is due to the ‘field identification’

ch
(NS),ki

ki−ℓi,mi+ki+2(τ, z) = ch
(NS),ki

ℓi,mi
(τ, z) .
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which is necessary for the space-time SUSY. By construction F
(NS)
I vanishes unless (2.9)

is satisfied. On the other hand the integral spectral flow (a ∈ ZN ) acts on the collective

index I as

s : I ≡ {(ℓ1,m1), · · · , (ℓr,mr)} 7−→ s(I) ≡ {(ℓ1,m1 − 2), · · · , (ℓr,mr − 2)} , (2.10)

so obviously,

F
(α)
sn(I)(τ, z) = F

(α)
I (τ, z) , (∀n ∈ Z) . (2.11)

In this sense the summation in (2.5) overcounts the chiral blocks and the factor of 1/N has

been included to compensate the redundancy. The chiral blocks F
(NS)
I (τ, z) defined this

way are often useful, since the modular invariance is manifest.

To close this preliminary section, we briefly illustrate the structure of the Hilbert space

in the Gepner construction of K3. By the above construction the Hilbert spaces are shown

to be

H(α)
Gepner =

⊕

n∈ZN

⊕

I,Ĩ
Q(I)∈Z, Q(Ĩ)∈Z

[
NI,Ĩ H

(α)
sn(I),L ⊗H(α)

Ĩ ,R

]
, (α = NS,R) (2.12)

where sn is the actions of the integral spectral flows and H(α)
I,L (H(α)

Ĩ,R
) denotes the left

(right) moving Hilbert spaces corresponding to the chiral blocks F
(α)
I (τ, z) (F

(α)

Ĩ
(τ, z)),

that are tensor products of the Mki
minimal model Hilbert spaces. Note that the left-

right symmetric primary states lie in the n = 0 sector, but we also have many asymmetric

primary states generated by the spectral flows. We will later work with the type II string

vacua that include chiral spin structures. In those cases the Hilbert spaces (2.12) need be

extended by the 1/2-spectral flows acting chirally.

In the present ĉ = 2 case relevant for K3, the N = 2 superconformal symmetry is

enhanced to the (small) N = 4 by adding the spectral flow operators, which are identified

with the SU(2)1 currents J± ≡ J1 ± iJ2 in the N = 4 superconformal algebra (SCA) [16].

Accordingly, the chiral parts of H(α)
Gepner are decomposed into irreducible representations of

N = 4 SCA at level 1, that are classified as follows [17]:

• massive representations: C(NS)
h , C(R)

h

These are non-degenerate representations whose vacua have conformal weights h. The

vacuum of C(NS)
h belongs to the spin 0 representation of the SU(2)1-symmetry. The

four-fold degenerate vacua of C(R)
h generate the representation 2[spin 0] ⊕ [spin 1/2].

Unitarity requires h ≥ 0 for C(NS)
h and h ≥ 1

4 for C(R)
h . The 1/2-spectral flow connects

C(NS)
h with C(R)

h+ 1
4

.

• massless representations: D(NS)
ℓ , D(R)

ℓ (ℓ = 0, 1/2)

These are degenerate representations whose vacua have conformal weights h = ℓ for

the NS representations D(NS)
ℓ , and h = 1

4 for the Ramond representations D(R)
ℓ ; they

– 5 –
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belong to the spin ℓ representation of SU(2)1. To be more specific, D(NS)
0 (‘graviton

rep.’ or ‘identity rep.’) corresponds to the unique vacuum with h = 0, J3
0 = 0,

while D(NS)
1/2 (‘massless matter rep.’) is generated over doubly degenerated vacua

with h = 1/2, J3
0 = ±1/2. The Ramond sector D(R)

1
2
−ℓ

is connected with D(NS)
ℓ by the

1/2-spectral flow.

The decomposition in terms of the N = 4 SCA will be crucial for our construction of the

mirrorfolds. The relevant character formulas are summarized in appendix A.

2.2 The mirror twist

Now let us specify the precise action of the mirror involution operator σmirror in (2.1).

First of all, σmirror should act as the U(1)-charge conjugation in the right moving N = 2

SCA:

σmirror,R(≡ σN=2
R ) : TR → TR , JR → −JR , G±

R → G∓
R , (2.13)

while leaving the left moving N = 2 SCA unchanged. Moreover, as the theory is endowed

with the N = 4 SCA at level 1, the above σmirror,R acts on the right-moving N = 4

generators {TR, Ga
R, J i

R} (a = 0, 1, 2, 3 and i = 1, 2, 3) as well. With the generators of the

(total) N = 2 SCA identified as

JR = 2J3
R , G±

R = G0
R ± iG3

R , (2.14)

the action of the involution is naturally extended on the N = 4 algebra as

σmirror,R(≡ σN=4
1,R ) : TR → TR , J1

R → J1
R , J i

R → −J i
R (i = 2, 3) ,

Ga
R → Ga

R (a = 0, 1) , Ga
R → −Ga

R (a = 2, 3) . (2.15)

Here we have introduced the symbol σN=4
1,R for later convenience, and σN=4

2,R , σN=4
3,R are

defined in the same way by the cyclic permutations of the indices i and a. Since we are

assuming the Gepner construction, the total involution σmirror,R is most naturally realised

by taking the tensor product of N = 2 involutions in each N = 2 minimal model Mki

(i = 1, . . . , r):

σmirror,R ≡
r∏

i=1

σ
N=2,(i)
R , (2.16)

where σ
N=2,(i)
R acts on the N = 2 SCA of Mki

as

σ
N=2,(i)
R : T

(i)
R → T

(i)
R , J

(i)
R → −J

(i)
R , G

±,(i)
R → G

∓,(i)
R . (2.17)

It is easy to see that σmirror,R defined in this way acts on the N = 4 SCA as the operator

σN=4
1,R above. We shall assume the right-moving operation of the form (2.16) from now on.

The operation of the left-mover σmirror,L still needs to be determined. The simplest

guess would be σmirror,L ≡ 1, but this does not work. In fact, it turns out that σnaive
mirror ≡

– 6 –
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1 ⊗ σmirror,R does not leave invariant the closed string Hilbert space of the Gepner model

HGepner.
4 We propose that the operator σmirror,L should satisfy following requirements:

1. σmirror ≡ σmirror,L ⊗ σmirror,R acts over HGepner as an involution,

σmirror(HGepner) = HGepner, (σmirror)
2 = 1. (2.18)

2. σmirror,L preserves the total N = 2 SCA {TL, JL, G±
L}.

3. The orbifolding by σmirror ≡ σmirror,L ⊗ σmirror,R is compatible with modular invari-

ance.

Due to the second requirement, σmirror,L can only act as a linear transformation on the

primary states of the total N = 2 SCA. Especially, it can be regarded as phase changes on

a suitably chosen basis of primary states.

We consider following two candidates for σmirror,L:

(i) σmirror,L acting on the N = 4 SCA as the automorphism σN=4
3,L . For the N = 4

primary states |v〉L, the action of σmirror,L is defined as

σmirror,L|v〉L ≡





∏r
i=1 σ

N=2,(i)
L |v〉L , (2J3

L,0|v〉L = 0) ,

J+
L,0

∏r
i=1 σ

N=2,(i)
L |v〉L , (2J3

L,0|v〉L = |v〉L) ,

−J−
L,0

∏r
i=1 σ

N=2,(i)
L |v〉L , (2J3

L,0|v〉L = −|v〉L) ,

(2.19)

where J±
L ≡ J1

L ± iJ2
L are the SU(2) currents in the N = 4 SCA.

(ii) σmirror,L preserving the N = 4 SCA. For the N = 4 primary states |v〉L, the action

of σmirror,L is defined as

σmirror,L|v〉L ≡





∏r
i=1 σ

N=2,(i)
L |v〉L , (2J3

L,0|v〉L = 0) ,

J+
L,0

∏r
i=1 σ

N=2,(i)
L |v〉L , (2J3

L,0|v〉L = |v〉L) ,

J−
L,0

∏r
i=1 σ

N=2,(i)
L |v〉L , (2J3

L,0|v〉L = −|v〉L) .

(2.20)

It is easy to verify that these two candidates indeed satisfy the first and second conditions

given above. Checking the modular invariance is a non-trivial task and we will discuss it

from now on.

4For example, pick up a symmetric primary state of the form

|v〉 ≡
Y

i

|ℓi, mi, si〉L ⊗
Y

i

|ℓi, mi, si〉R , (ℓi + mi + si ∈ 2Z, mi ∈ Z2(ki+2), si ∈ Z4).

The above σnaive
mirror acts on it as

σ
naive
mirror|v〉 =

Y

i

|ℓi, mi, si〉L ⊗
Y

i

|ℓi,−mi,−si〉R ,

which in general is not a state in HGepner.

– 7 –
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2.3 Modular invariant partition functions of the mirrorfolds with compact K3

fibers

We shall construct modular invariant partition functions of the mirrorfolds (2.1). We take

an arbitrary Gepner model describing a compact K3 fiber. We assume (2.16) for σmirror,R,

and adopt the first candidate (2.19) for σmirror,L.

Before discussing the construction of the modular invariant, we need to find the N = 4

character formulas twisted by σN=4
i,L (σN=4

i,R ). We first focus on the σN=4
3,L -twist. We express

the spatial and temporal boundary conditions as [S, T ], S, T ∈ Z2 (S, T = 0 means no

twist, while S, T = 1 indicates twisting by σN=4
3,L ). The desired character formulas are

readily obtained by starting with the temporal twist boundary condition [S, T ] = [0, 1] (i.e.

inserting σN=4
3,L into the trace), which results in an extra phase factor (−1)n in the n-th

spectral flow sector. For [S, T ] = [0, 1] the formula (A.13) is thus replaced by

ch
N=4,(NS)
∗,[0,1] (∗; τ, z) ≡ TrH[σN=4

3,L qL0−
1
4 y2J3

0 ]

=
∑

n∈Z

(−1)nqn2
y2nch

N=2,(NS)
∗ (∗; τ, z + nτ) . (2.21)

Here H denotes the representation space of C(NS)
h , D(NS)

0 or D(NS)
1/2 . We spell out explicit

results in each case:

massive representation:

ch
N=4,(NS)
[0,1] (h; τ, z) = qh− 1

8

∑

n∈Z

(−1)nq
n2

2 yn θ3(τ, z)

η(τ)3
= qh− 1

8
θ3(τ, z)θ4(τ, z)

η(τ)3
,(2.22)

massless representations:

ch
N=4,(NS)
0,[0,1]

(
ℓ =

1

2
; τ, z

)
= q−1/8

∑

n∈Z

(−1)n+1 1

1 + yqn−1/2
q

n2

2 yn θ3(τ, z)

η(τ)3
, (2.23)

ch
N=4,(NS)
0,[0,1] (ℓ = 0; τ, z) = q−1/8

∑

n∈Z

(−1)n
(1 − q)q

n2

2
+n− 1

2 yn+1

(1 + yqn+1/2)(1 + yqn−1/2)

θ3(τ, z)

η(τ)3

≡ q−1/8 θ3(τ, z)θ4(τ, z)

η(τ)3
≡ ch

N=4,(NS)
[0,1] (h = 0; τ, z) . (2.24)

The second line of (2.24) follows from identity

(1 − q)qn− 1
2 y

(1 + yqn+1/2)(1 + yqn−1/2)
= 1 − 1

1 + yqn− 1
2

− yqn+ 1
2

1 + yqn+ 1
2

. (2.25)

Specializing to z = 0, we further obtain

ch
N=4,(NS)
[0,1] (h; τ, 0)=qh−1/8 θ3(τ)θ4(τ)

η(τ)3
≡ qh−1/8 2

θ2(τ)
≡ χ[0,1](p; τ) ,

(
h =

p2

2
+

1

8

)
,(2.26)

ch
N=4,(NS)
0,[0,1] (ℓ = 1/2; τ, 0)=q−1/8

∑

n∈Z

(−1)n+1 1

1 + qn−1/2
q

n2

2
θ3(τ)

η(τ)3
≡ 0 , (h = 1/2) , (2.27)

– 8 –
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ch
N=4,(NS)
0,[0,1] (ℓ = 0; τ, 0) = q−1/8 θ3(τ)θ4(τ)

η(τ)3
≡ q−1/8 2

θ2(τ)
≡ χ[0,1](p = i/2; τ) , (h = 0) ,(2.28)

where we used the abbreviation θi(τ) ≡ θi(τ, 0), and χ[0,1](p; τ) is the N = 2 twisted

character of ĉ = 2 (B.4).

The character formulas for the other boundary conditions are derived by acting mod-

ular transformations successively, at least for z = 0. We denote the spin structures and the

boundary conditions of σN=4
3,L such as {NS, [S, T ]}. Starting with the character formula of

{NS, [0, 1]} given above, it turns out that there are three types of non-trivial characters

χ[0,1](p; τ), χ[1,0](p; τ), χ[1,1](p; τ) (see (B.4)):

{NS, [0, 1]}, {ÑS, [0, 1]} : χ[0,1](p; τ) ≡ 2q
p2

2

θ2(τ)
,

(
h =

p2

2
+

1

8

)
,

{NS, [1, 0]}, {R, [1, 0]} : χ[1,0](p; τ) ≡ 2q
p2

2

θ4(τ)
,

(
h =

p2

2
+

1

4

)
,

{ÑS, [1, 1]}, {R, [1, 1]} : χ[1,1](p; τ) ≡ 2q
p2

2

θ3(τ)
,

(
h =

p2

2
+

1

4

)
. (2.29)

These are the building blocks necessary for our construction of the mirrorfold modular

invariants. There still remain boundary conditions that are connected to {R, [0, 1]} and

{R̃, [0, 1]} by modular transformations. We need some further technicality to obtain such

twisted characters, and the complete list of the N = 4 twisted characters are given in

appendix D. For our purposes, however, only the ones given in (2.29) are needed.

What about the σN=4
1,L -twisting? Since the σN=4

1,L -twist acts as J(≡ 2J3) → −J on

the U(1)R-current of the underlying N = 2 SCA, none of the spectrally flowed sectors

contribute to the σN=4
1,L -twisted characters. Recalling that the N = 4 SCA is obtained

by extending the N = 2 SCA by adding the spectral flow operators, we conclude that

the σN=4
1,L -twisted N = 4 characters must coincide with the twisted N = 2 characters of

ĉ = 2 (B.4). This means that we are simply led to the same classification of σN=4
1 -twisted

characters as (2.29).

In this sense it seems natural to express the above twisted character χ[0,1](p; τ) in two

different ways, one that is natural for the σN=4
3 -twist, and the other for the σN=4

1 twist:

χ[0,1](p; τ) = Tr
C
(NS)
h

[σN=4
1,L qL0−

1
4 ] =

qh−1/8

η(τ)
·
√

2η(τ)

θ2(τ)
·
√

θ3(τ)θ4(τ)

η(τ)2

≡ qh− 1
4

∏∞
n=1(1 + qn−1/2)(1 − qn−1/2)∏∞

n=1(1 − qn)(1 + qn)
, (2.30)

χ[0,1](p; τ) = Tr
C
(NS)
h

[σN=4
3,L qL0−

1
4 ] = qh−1/8θ4(τ) · θ3(τ)

η(τ)3

≡ qh− 1
4

∑

n∈Z

(−1)nq
n2

2

∏∞
n=1(1 + qn−1/2)2∏∞

n=1(1 − qn)2
. (2.31)

The equality of (2.30) and (2.31) is immediately checked by the Euler identity

θ2(τ)θ3(τ)θ4(τ) = 2η(τ)3. The equivalence of the σN=4
3 - and σN=4

1 -twisted character for-

mulas (2.29) is anticipated from the existence of an automorphism interpolating σN=4
3 and
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σN=4
1 within the N = 4 SCA. Similar results for the other boundary condition (such as

{R, [0, 1]}), which are less trivial, are discussed in appendix D.

We now proceed to our main analysis. The chiral blocks for each sector of the K3

twisted by σmirror ≡ σmirror,L ⊗ σmirror,R are obtained as follows.

The right-mover. After making the σmirror,R-insertion only the spectral flow orbits of

type {(ℓ1, 0), . . . , (ℓr, 0)} belonging to the NS or ÑS sectors survive, while none of the orbits

in the R nor R̃ sectors contributes.5 The resultant chiral blocks are

χk

l,[S,T ](τ) ≡
r∏

i=1

χki

ℓi,[S,T ](τ) , (2.32)

l ≡ (ℓ1, . . . , ℓr) , k ≡ (k1, . . . , kr) ,

where χki

ℓi,[S,T ](τ) are the twisted characters of the N = 2 minimal models (B.6). The chiral

blocks (2.32) can also be expressed in terms of the twisted N = 4 characters χ[S,T ](p; τ)

(2.29). For example, picking up the spectral flow orbit l ≡ {(ℓ1, 0), . . . , (ℓr, 0)}, we may

write,

χk

l,[0,1](τ) ≡ Trorbit of l

[
σmirror,R q̄L̃0−

1
4

]

=

∞∑

n=0

an,l χ[0,1](pn,l; τ)

(
p2

n,l

2
+

1

8
= hl + n , hl ≡

∑

i

ℓi(ℓi + 2)

4(ki + 2)

)

=
∞∑

n=0

an,l q̄
hl+n− 1

8
2

θ2(τ)
, (2.33)

with an,l ∈ Z, a0,l = 1. It is convenient to introduce a function fk

l,[0,1](τ) defined by power

series

fk

l,[0,1](τ) ≡
∞∑

n=0

an,l q
hl+n− 1

8 , (2.34)

or more concisely,

χk

l,[0,1](τ) =
2

θ2(τ)
fk

l,[0,1](τ) . (2.35)

Similar functions for the other boundary conditions fk

l,[1,0], fk

l,[1,1] are defined in the same

way,

χk

l,[1,0](τ) =
2

θ4(τ)
fk

l,[1,0](τ) , χk

l,[1,1](τ) =
2

θ3(τ)
fk

l,[1,1](τ) . (2.36)

5The easiest way to see this is to recall that the N = 2 involution σN=2 acts on primary states of the

N = 2 minimal model Mk as

σ
N=2 : |ℓ, m, s〉 7−→ |ℓ,−m,−s〉 , (ℓ + m + s ∈ 2Z, ℓ = 0, . . . , k, m ∈ Z2(k+2), s ∈ Z4) .

In the R-sector we have s = ±1 (mod 4) and thus σN=2 does not have any fixed point. This means that

the σN=2-inserted traces always vanish in the R-sector.
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By construction we find,

TrN=4 vacua of l[σmirror,R q̄L̃0−
1
4 ] = fk

l,[0,1](τ) , (2.37)

where the trace is taken over the N = 4 primary states belonging to the orbit l. Modular

properties of functions fk

l,[S,T ](τ) are immediately read off from those of the N = 2 twisted

minimal characters χki

ℓi,[S,T ]. See formulas (B.9).

The left-mover. Since we have assumed (2.19) for σmirror,L, it is convenient to decompose

the chiral blocks into the N = 4 irreducible representations. Contributions from the

massless rep. D(NS)
1/2 (Q = ±1) trivially vanish because of (2.27). Also, the Ramond rep.

D(R)
1/2 does not contribute because

ch
N=4,(R)
0,[0,1] (ℓ = 1/2; τ, 0)

(
≡ Tr

D
(R)
1/2

[
σN=4

3,L qL0−
1
4

])
≡ q

1
4 ch

N=4,(NS)
0,[0,1]

(
ℓ = 0; τ,

τ

2

)

= q−
1
8
iθ1(τ, 0)θ2(τ, 0)

η(τ)3
= 0 , (2.38)

where we have used (2.24) in the second line. Thus, possible non-vanishing contributions

only come from representations generated by neutral N = 4 primary states (Q = 0).

Since σmirror,L acts as
∏

i σ
N=2,(i)
L on neutral N = 4 primaries, again we find only the

contributions from spectral flow orbits l ≡ {(ℓ1, 0), . . . , (ℓr, 0)} in the NS (ÑS) sector, and

no contribution from the R (R̃) sector. We thus obtain,

TrN=4 vacua of l[σmirror,L qL0−
1
4 ] = fk

l,[0,1](τ) , (2.39)

TrN=4 vacua of other neutral orbits[σmirror,L qL0−
1
4 ] = 0 . (2.40)

As we observed above, the σN=4
3 -twisted characters are equal to the σN=4

1 -twisted ones

in the relevant sectors. Therefore, we conclude that the chiral blocks of the left-mover

formally take the same form as the right-mover:

Trorbit of l[σmirror,LqL0−
1
4 ] = fk

l,[0,1](τ) · 2

θ2(τ)

(
≡ fk

l,[0,1](τ) · θ3(τ)θ4(τ)

η(τ)3

)
. (2.41)

The same happens for other boundary conditions [1, 0], [1, 1] due to modular transforma-

tions. This fact makes the modular invariance of the K3 mirrorfolds possible.

At this stage, we may describe the modular invariant partition functions for the string

vacua of our mirrorfold model (2.1) (× flat space-time R
4,1). It can be written in the form,

Z(τ, τ̄) = Zu(τ, τ̄ ) + Zt(τ, τ̄ ) , (2.42)

where Zu is the partition function of the untwisted sector, and Zt denotes contributions of

the twisted sectors6 including both temporal and spatial twists by σmirror ⊗ T2πR.

6In the literature it is traditional to use this term for sectors with only the spatial twist(s). Here, we define

Zt to include also the temporal-twisted sector. This somewhat non-standard usage is for computational

convenience and hopefully no confusion arises.
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Assuming the type II string vacuum, the partition function for the untwisted sector is

given as

Zu(τ, τ̄ )=
1

2
· 1

4N

∑

α,α̃

∑

I,Ĩ

ǫ(α)ǫA or B(α̃)

(
θ[α]

η

)2(θ[α̃]

η

)2

NI,ĨF
(α)
I (τ)F

(α̃)

Ĩ
(τ)· 1

τ
3/2
2 |η|6

Z2R(τ, τ̄),

(2.43)

where we set θ[NS] = θ3, θ
[ fNS]

= θ4, θ[R] = θ2 (θ[eR] = iθ1 ≡ 0), and ǫ(NS) = ǫ(R̃) = +1,

ǫ(ÑS) = ǫ(R) = −1. For the right-mover, we set ǫB(α̃) = ǫ(α̃) for type IIB, while ǫA(NS) =

+1, ǫA(ÑS) = ǫA(R) = ǫA(R̃) = −1 for type IIA. We used abbreviation F
(α)
I (τ) ≡ F

(α)
I (τ, 0)

here.

Free non-compact bosons in the (transverse part of) R
4,1 contribute to the factor

1/τ
3/2
2 |η|6. The familiar partition function of a compact boson with radius R is

ZR(τ, τ̄ ) =
R

√
τ2 |η(τ)|2

∑

w,m∈Z

e
−πR2

τ2
|wτ+m|2

. (2.44)

We further introduce

ZR,(a,b)(τ, τ̄ ) =
R

√
τ2 |η(τ)|2

e
−πR2

τ2
|aτ+b|2

, (a, b ∈ Z) , (2.45)

which describes the contribution from each winding sector

Y (z + 1, z̄ + 1) = Y (z, z̄) + 2πaR ,

Y (z + τ, z̄ + τ̄) = Y (z, z̄) + 2πbR . (2.46)

The sectors with even windings a, b ∈ 2Z are identified with the untwisted sectors, leading

to

∑

a,b∈2Z

ZR,(a,b)(τ, τ̄) =
1

2
Z2R(τ, τ̄ ) . (2.47)

The partition function of the twisted sectors is much more complicated. Requiring

modular invariance, the partition function Zt(τ, τ̄ ) is expected to be of the form,

Zt(τ, τ̄) =
∑

a∈2Z+1
or b∈2Z+1

ZR,(a,b)(τ, τ̄ ) Ξ(a,b)(τ, τ̄ ) , (2.48)

where Ξ(a,b)(τ, τ̄ ) are some functions that behave covariantly under modular transforma-

tions,

Ξ(a,b)(τ + 1, τ̄ + 1) = Ξ(a,b+a)(τ, τ̄) , Ξ(a,b)(−1/τ,−1/τ̄ ) = Ξ(b,−a)(τ, τ̄ ) . (2.49)

The winding dependence of Ξ(a,b)(τ, τ̄) primarily originates from the σmirror-twisting

in the K3-sector:
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(i) a ∈ 2Z, b ∈ 2Z + 1: the sector with temporal twisting by σmirror.

(ii) a ∈ 2Z + 1, b ∈ 2Z: the sector with spatial twisting by σmirror.

(iii) a ∈ 2Z+1, b ∈ 2Z+1: the sector with both temporal and spatial twisting by σmirror.

The calculation for each chiral block of the K3 sector is carried out based on the above

argument. After summing over the chiral spin structures, we find following partition func-

tions for the twisted sectors:

Zt(τ, τ̄ ) =
1

4

∑

a∈2Z+1
or b∈2Z+1

ZR,(a,b)(τ, τ̄ )
1

τ
3/2
2 |η|6

Zf
(a,b)(τ, τ̄ )

∑

l,̃l

N
[[a],[b]]

l,̃l
χk

l, [[a],[b]](τ)χk

l̃, [[a],[b]]
(τ)

≡ 1

4

∑

a∈2Z

b∈2Z+1

ZR,(a,b)(τ, τ̄)
1

τ
3/2
2 |η|6

∣∣∣∣∣

(
θ3

η

)2

− (−1)
a
2

(
θ4

η

)2
∣∣∣∣∣

2

×
∑

l,̃l

N
[0,1]

l,̃l
fk

l, [0,1](τ)θ4(τ)
θ3(τ)

η(τ)3
· fk

l̃, [0,1]
(τ)

1

η(τ)

√
2η(τ)

θ2(τ)

√
θ3(τ)θ4(τ)

η(τ)2

+
1

4

∑

a∈2Z+1
b∈2Z

ZR,(a,b)(τ, τ̄)
1

τ
3/2
2 |η|6

∣∣∣∣∣

(
θ3

η

)2

− (−1)
b
2

(
θ2

η

)2
∣∣∣∣∣

2

×
∑

l,̃l

N
[1,0]

l,̃l
fk

l, [1,0](τ)θ2(τ)
θ3(τ)

η(τ)3
· fk

l̃, [1,0]
(τ)

1

η(τ)

√
2η(τ)

θ4(τ)

√
θ2(τ)θ3(τ)

η(τ)2

+
1

4

∑

a∈2Z+1
b∈2Z+1

ZR,(a,b)(τ, τ̄)
1

τ
3/2
2 |η|3

∣∣∣∣∣

(
θ4

η

)2

+ i(−1)
a+b
2

(
θ2

η

)2
∣∣∣∣∣

2

×
∑

l,̃l

N
[1,1]

l,̃l
fk

l, [1,1](τ)θ2(τ)
θ4(τ)

η(τ)3
· fk

l̃, [1,1]
(τ)

1

η(τ)

√
2η(τ)

θ3(τ)

√
θ4(τ)θ2(τ)

η(τ)2
,

(2.50)

where we set [a] ∈ Z2, a ≡ [a] (mod 2), and N
[S,T ]

l,̃l
are suitably chosen coefficients, which

will be specified below. In the second line we emphasized the N = 4 structure in the

K3-sector. We have adopted an apparent asymmetric form as in [4], which seems natural

if we recall σmirror,R ∼ σN=4
1,R , σmirror,L ∼ σN=4

3,L when acting on the N = 4 SCA.

Let us further elaborate contributions from each sector.

(1) S
1-sector (bosonic): The bosonic part of the S1-direction is represented by the

functions ZR,(a,b)(τ, τ̄ ), (a, b ∈ Z). Sectors with a ∈ 2Z + 1 or b ∈ 2Z + 1 correspond

to twisted sectors, while contributions from a, b ∈ 2Z are included in the partition

function of the untwisted sector Zu(τ, τ̄ ).
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[0,1] [1,0] [1,1]

NS χk

l,[0,1](τ) χk

l,[1,0](τ) 0

ÑS χk

l,[0,1](τ) 0 χk

l,[1,1](τ)

R 0 χk

l,[1,0](τ) χk

l,[1,1](τ)

R̃ 0 0 0

Table 1: Relation between the σmirror-twists and the spin structures. Note that fk

l,[α,β](τ) are

subject to the same relations.

(2) K3-sector: As discussed above, the chiral blocks are written in the form of

∑

l,̃l

N
[[a],[b]]

l,̃l
χk

l,[[a],[b]](τ)χk

l̃,[[a],[b]]
(τ) ≡

∑

l,̃l

N
[[a],[b]]

l,̃l
fk

l,[[a],[b]](τ)fk

l̃,[[a],[b]]
(τ)

∣∣∣∣
2

θ[[a],[b]](τ)

∣∣∣∣
2

,

θ[0,1] ≡ θ2 , θ[1,0] ≡ θ4 , θ[1,1] ≡ θ3 . (2.51)

The relation between the spin structure and the σmirror-twisting is slightly non-trivial,

and is summarized in table 1. As was already illustrated, the chiral block for boundary

condition [0, 1] (a ∈ 2Z, b ∈ 2Z+1) includes only the NS and ÑS-sectors, contributing

the same character function χk

l,[0,1](τ). There is no contribution from the R-sector for

this boundary condition.

The blocks (2.51) are clearly modular covariant with respect to the indices a, b, but

the modular transformations generate non-trivial mixing of the quantum numbers l

and l̃. We thus have to choose the coefficients N
[[a],[b]]

l,̃l
carefully. This is accomplished

by requiring (in addition to the modular invariance) that the orbifold projection
1+σmirror

2 acts correctly on the total Hilbert space. To this aim it is convenient to

classify the K3 Gepner models into the following two cases.7

(i) At least one of ki’s is odd. It is easiest to look at the [0, 1]-sector (σmirror-

insertion). The problem translates into finding out terms that survive the

σmirror-insertion in the trace out of the spectral flow orbits

{(ℓ1, 0), . . . , (ℓr, 0)}L ⊗ {(ℓ̃1, 2n), . . . , (ℓ̃r, 2n)}R (n ∈ ZN ) . (2.52)

Under the assumption on ki, we see that only the terms of the form
∏

i

χki

ℓi,[0,1](τ)χki

ℓi,[0,1](τ) (2.53)

do survive. We thus obtain

N
[[a],[b]]

l,̃l
=

r∏

i=1

δℓi,ℓ̃i
. (2.54)

This renders (2.51) trivially modular covariant.

7There is an analogous discussion on modular invariance in [18].
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(ii) All ki’s are even. The situation is more involved in this case. We now have

N ∈ 2Z. We define,

S1 =
{

i ∈ {1, . . . , r} ;
N

ki + 2
∈ 2Z + 1

}
,

S2 =
{

i ∈ {1, . . . , r} ;
N

ki + 2
∈ 2Z

}
. (2.55)

One finds that, in addition to (2.53), terms like

∏

i

χki

ℓi,[0,1](τ) ·
∏

i∈S2

χki

ℓi,[0,1](τ)
∏

i∈S1

χki−ℓi

ℓi,[0,1](τ) (2.56)

also contribute (they appear as the n = N/2 component in the orbit (2.52)).

We thus obtain

N
[0,1]

l,̃l
=
∏

i∈S2

δℓi,ℓ̃i

∏

i∈S1

(
δℓi,ℓ̃i

+ δℓi,ki−ℓ̃i

)
, (2.57)

and by taking the modular transformations, also find

N
[1,0]

l,̃l
= N

[1,1]

l,̃l
=
(
1 + (−1)

P
i∈S1

ℓi

) r∏

i=1

δℓi,ℓ̃i
. (2.58)

To check the modular covariance we further have to classify

(ii)-(a): N ∈ 4Z

In this case8 we can prove that (1) S1 6= ∅, (2) ♯S1 ∈ 2Z, (3) ki ∈ 4Z+2

for ∀i ∈ S1.

(ii)-(b): N ∈ 4Z + 2

This time we have (1) S1 6= ∅, (2) ki ∈ 4Z for ∀i ∈ S1.

Making use of these properties and the modular transformation formulas (B.9),

one can confirm that (2.57), (2.58) assure the modular covariance of (2.51).

(3) The free fermion part: The free fermion part of the flat space-time (tranverse part

of R
4,1) and the S1-direction consists of four fermions. As shown in (2.50), the

partition sums of the free fermion part Zf
(a,b)

(τ, τ̄ ) are given as

Zf
(a,b)(τ, τ̄ ) =





∣∣∣∣
(

θ3
η

)2
− (−1)

a
2

(
θ4
η

)2
∣∣∣∣
2

, (a ∈ 2Z , b ∈ 2Z + 1) ,
∣∣∣∣
(

θ3
η

)2
− (−1)

b
2

(
θ2
η

)2
∣∣∣∣
2

, (a ∈ 2Z + 1 , b ∈ 2Z) ,
∣∣∣∣
(

θ4
η

)2
+ i(−1)

a+b
2

(
θ2
η

)2
∣∣∣∣
2

, (a ∈ 2Z + 1 , b ∈ 2Z + 1) .

(2.59)

8Both N ∈ 4Z and N ∈ 4Z +2 are possible for the K3 Gepner model, in contrast to the CY3 case where

we only have the first possibility N ∈ 4Z when all ki are even [18].
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One may identify, for instance in the a ∈ 2Z, b ∈ 2Z + 1 sector,
(

θ3
η

)2
is the NS

contribution, while (−1)
a
2

(
θ4
η

)2
lies in the ÑS sector. The absence of R sector is

due to the structure of the chiral blocks in the K3-sector (see table 1). The terms in

the other sectors may be identified similarly. It should be remarked that the winding

dependent phase factors (−1)
a
2 , (−1)

b
2 and i(−1)

a+b
2 are necessary for the expected

modular covariance. Indeed, with these phase factors Zf
(a,b)(τ, τ̄ ) behave covariantly

under the modular transformations,

Zf
(a,b)(−1/τ,−1/τ̄ ) = Zf

(b,−a)(τ, τ̄ ) , Zf
(a,b)(τ + 1, τ̄ + 1) = Zf

(a,a+b)(τ, τ̄ ) .(2.60)

This can be checked by rewriting the functions Zf
(a,b)(τ, τ̄) in a unified manner,

Zf
(a,b)(τ, τ̄ ) =

∣∣G(a,b)(τ)
∣∣2 ,

G(a,b)(τ) ≡ 2q
a2

8 e
iπ
4

ab

(
θ1(τ,

aτ+b
4 )

η(τ)

)4

, (2.61)

from which the modular covariance immediately follows.

Assembling these results the total partition function Z(τ, τ̄) = Zu(τ, τ̄) + Zt(τ, τ̄ ) is

indeed verified to be modular invariant with the above coefficients N
[S,T ]

l,̃l
.

We conclude this section with several comments.

• By our construction σmirror,R yields the automorphism σN=2
(i) in each N = 2 minimal

sector Mki
, whereas σmirror,L does not induce any automorphism in Mki

. We also

point out that the transformation interpolating between σN=4
3 and σN=4

1 is generically

just an outer automorphism of N = 4 SCA. Thus there is no self-evident principle

a priori that relates the action of σN=4
3 with that of σN=4

1 on the N = 4 primary

states.

• As addressed above, the chiral blocks of the left-mover have formally the same forms

as the right-mover. This means that if we only look at the closed string spectrum the

model is indistinguishable from the symmetric orbifold with Z2-twisting σL = σR, as

the closed string partition functions are equal. Nevertheless, it should be emphasised

that the asymmetric orbifold (with twist σmirror,L 6= σmirror,R) is different from the

corresponding symmetric orbifold; the distinction being crucial for the physics of D-

branes in this string vacuum. As observed in [6], an asymmetric orbifold generally

yields different spectrum of geometric D-branes realized by linear gluing conditions

from that of a symmetric type orbifold. We also point out that the mirror-involution

σmirror given above still includes a phase ambiguity due to an ambiguity of σN=2,(i) in

each Mki
sector. This phase ambiguity does not affect the torus partition function we

have obtained, but it would become important when we examine the D-brane spec-

trum. We hope to report on detailed aspects on D-branes in mirrorfolds elsewhere.

• These mirrorfold string vacua break the space-time SUSY completely, yielding a non-

vanishing cosmological constant at the one-loop level. In fact, as is seen in (2.50),
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the partition function in the twisted sector does not vanish at all, in contrast to the

untwisted sector which is kept supersymmetric. In other words, the space-time SUSY

is broken by the winding string modes, which is similar to the Scherk-Schwarz type

S1-compactification [15]. It is easy to see that the most tachyonic winding mode

appears in the sector of a = 1, which has a mass squared proportional to9

h − 1

2
= −1

2
+ minℓ1,...,ℓr

[
r∑

i=1

ht
ℓi

]
+

R2

4

≥ −1

4
+

R2

4
, (2.62)

where ht
ℓi

≡ ki−2+(ki−2ℓi)
2

16(ki+2) + 1
16 are the conformal weights of the twisted characters

χki

ℓi,[1,0](τ) (B.8). (The minimum value of ht
ℓi

is achieved when ℓi =
[

ki
2

]
, and the

inequality (2.62) is saturated iff all the levels ki are even.) Thus there is no tachyonic

instability as long as R > 1 (self-dual radius). Of course, since R is a closed string

modulus, the base circle may shrink to R < 1 and in that case we encounter an

instability due to the winding tachyon condensation.

• The modular invariant constructed above is, contrary to what would naively be an-

ticipated, not of an order 2 orbifold but rather of an order 4 orbifold. This arises

from the fact that the free fermion part Zf
(a,b)(τ, τ̄) (2.59) is Z4-periodic with respect

to the windings a, b, rather than Z2. This is related to the chiral spin structures that

are characteristic to the type II vacua. If instead considering the type 0 vacua, the

free fermion part would take a simpler form

Zf,type 0(τ, τ̄ ) ∝ 1

2

[∣∣∣∣
θ3

η

∣∣∣∣
4

+

∣∣∣∣
θ4

η

∣∣∣∣
4

+

∣∣∣∣
θ2

η

∣∣∣∣
4
]
(
≡ ZSO(4)1(τ, τ̄ )

)
, (2.63)

which has no dependence on the windings a, b. Consequently, the type 0 vacua of the

mirror-folds are realized as order 2 orbifolds as expected from the intuitive picture.

• In the above construction we have chosen the first candidate (2.19) of the left action.

It is of course natural to ask what would happen if we instead use the second candidate

of operation (2.20), which might give rise to an asymmetric modular invariant, if

consistent at all. We were not able to construct a modular invariant using (2.20)

for compact K3 fibrations, and while we have not exhausted all possibilities, such a

construction seems quite unlikely. For instance, in the a ∈ 2Z, b ∈ 2Z + 1 sector, the

partition function typically includes terms like

∑

l,̃l

N
[0,1]

l,̃l

(
δl,0 ch

N=4,(NS)
0 (ℓ = 0; τ) +

∑

n≥1

an,l ch
N=4,(NS)(pn,l; τ)

)
·
∑

n≥0

an,̃l χ[0,1](pn,̃l; τ) .

(2.64)

9The temporal winding b may be dualized to the KK momentum by Poisson resummation in the standard

way, and it does not play any important role in this context. We also find that the sectors of a ∈ 4Z + 2,

b ∈ 2Z + 1 include other candidates of winding tachyons because of the wrong GSO projection due to the

phase factors appearing in (2.59). However, they are found to be always less tachyonic than that of the

a = 1 sector and do not alter the discussion here.
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The first term in the left moving part is the N = 4 massless character of spin 0 (gravi-

ton character), while the second term consists only of the massive characters. Due to

an involved behavior of the massless character under the modular S-transformation,

the modular invariance of the total partition function is likely to be spoiled (see

appendix A).

3. Mirrorfolds with non-compact K3 fibrations

In this section we discuss an extension of the mirrorfold model to include non-compact

Gepner-like models in the K3-fiber. In contrast to the compact fiber case, both (2.19) and

(2.20) are found to be compatible with modular invariance.

3.1 Non-SUSY vacua: symmetric modular invariants

Let us first consider orbifolding by the twist (2.19) as in the previous section. We now

assume non-compact Gepner-like models for the K3-fiber, defined by

Mfiber ≡
[
Mk1 ⊗ · · · ⊗ Mkr ⊗ LN̄,K̄

]
/ZN , (3.1)

N ≡ L.C.M. {ki + 2, N̄} ,
r∑

i=1

ki

ki + 2
+

(
1 +

2K̄

N̄

)
= 2 , (3.2)

where LN̄,K̄ denotes the SL(2; R)/U(1) Kazama-Suzuki supercoset model at level k ≡ N̄/K̄

(for simplicity we assume N̄ and K̄ to be relatively prime hereafter). Note, in particular,

that this includes the AN−1-type ALE spaces [21] as a simplest case of the fiber SCFT,

Mfiber = [MN−2 ⊗ LN,1]/ZN .

With these fibre models we may construct mirrorfolds in the same way as in the previous

section,
Mfiber × S1

2R

σmirror ⊗ T2πR
.

Now let us work on the partition function. The total partition function generically has

the twisted and untwisted parts,

Z(τ, τ̄ ) = Zu(τ, τ̄ ) + Zt(τ, τ̄ ) , (3.3)

where we again define the twisted sector Zt(τ, τ̄ ) as including temporal or spatial twist by

σmirror ⊗T2πR. The untwisted sector Zu(τ, τ̄ ) involves no such twist. We shall discuss each

sector separately.

The untwisted sector. The partition function Zu(τ, τ̄ ) of the untwisted sector is known

to be IR-divergent, reflecting the infinite volume of the non-compact target space. The

regularized partition function splits into two parts [12] (see also [19, 20]),

Zu(τ, τ̄ ) = Zu
con(τ, τ̄ ) + Zu

dis(τ, τ̄ ) , (3.4)
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where the first term includes continuous representations of LN̄,K̄ and is expanded only with

the N = 4 massive characters. This is manifestly modular invariant and is proportional

to the (regularized) volume factor V ∼ ln ǫ (ǫ is the IR cut-off). The continuous part

describes the propagating degrees of freedom in the non-compact K3 space. The second

term Zu
dis(τ, τ̄ ), on the other hand, includes discrete representations of LN̄,K̄ . There is

no volume factor in the second term as it corresponds to the localized degrees of freedom

around isolated singularities in the background. The N = 4 character expansion of the

second (discrete) part involves both the massless matter characters (i.e. ℓ = 1/2 for the

NS sector) and the massive characters, but no graviton (identity) character. This means

that gravity decouples in the string vacua. A potential problem is that Zu
dis(τ, τ̄ ) is not

modular invariant in general. A way to circumvent this problem is to focus only on the

propagating degrees of freedom, by considering the partition function per unit volume as

discussed in [12];

lim
V →∞

Z

V
= lim

V →∞

Zcon.

V
. (3.5)

Note that the second term Zdis drops after divided by the infinite volume factor V .

The partition function for the untwisted sector is obtained as [11 – 13]

Zu
con.(τ, τ̄ )

V
=

1

2
· 1

4N

∑

α,α̃

∑

I,Ĩ

, ǫ(α)ǫ(α̃)NI,ĨG
(α)
I (τ)G(α̃)

Ĩ
(τ)

1

τ2
2 |η(τ)|8 Z2R(τ, τ̄ )

(
θ[α]

η

)3(θ[α̃]

η

)3

,

(3.6)

where the chiral blocks in the NS sector are

G(NS)
I (τ, z) ≡ 1

N

∑

a,b∈ZN

q
a2

2 ya
r∏

i=1

ch
(NS),ki

ℓi,mi
(τ, z + aτ + b)

Θm̄,N̄K̄

(
τ, 2

N̄
(z+aτ +b)

)

η(τ)
, (3.7)

and those for the other spin structures are obtained by the 1/2 spectral flows. Here I ≡
{(ℓi,mi), m̄} is the collective index. The right-moving chiral blocks are similar, and NI,Ĩ

are some coefficients (not specified explicitly here)10 that are compatible with modular

invariance. We used the common abbreviation G(α)
I (τ) ≡ G(α)

I (τ, 0). The LN̄,K̄-sector

yields additional free oscillator contributions 1
|η|2

(
θ[α]

η

)(
θ[α̃]

η

)
, and the integral over the

zero-mode momentum of the non-compact boson (‘Liouville mode’) generates one more

factor τ
−1/2
2 . As addressed above, the partition function Zu

con. includes only the continuous

representations in the LN̄,K̄-sector, and its modular invariance is manifest.

10Note that the quantum numbers m̄ in the LN̄,K̄ -sector need not be symmetric. A typical modular

invariant includes

m̄ = K̄n0 + N̄w0 , ˜̄m = K̄n0 − N̄w0 , (n0 ∈ ZN̄ , w0 ∈ Z2K̄) .

See e.g. [13] for more details.
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The twisted sector. The construction of the twisted sector partition function is similar

to the compact case. We find,

Zt(τ, τ̄)

V
=

1

4

∑

a∈2Z

b∈2Z+1

ZR,(a,b)(τ, τ̄ )
1

τ2
2 |η|8

∑

l

χk

l,[0,1](τ)χk

l,[0,1](τ)
θ3θ4

η2
·
√

2η

θ2

√
θ3θ4

η2
·Zf

(a,b)(τ, τ̄)

+
1

4

∑

a∈2Z+1
b∈2Z

ZR,(a,b)(τ, τ̄ )
1

τ2
2 |η|8

∑

l

χk

l,[1,0](τ)χk

l,[1,0](τ)
θ2θ3

η2
·
√

2η

θ4

√
θ2θ3

η2
·Zf

(a,b)(τ, τ̄)

+
1

4

∑

a∈2Z+1
b∈2Z+1

ZR,(a,b)(τ, τ̄ )
1

τ2
2 |η|8

∑

l

χk

l,[1,1](τ)χk

l,[1,1](τ)
θ4θ2

η2
·
√

2η

θ3

√
θ4θ2

η2
·Zf

(a,b)(τ, τ̄).

(3.8)

where we set [a] ∈ Z2, a ≡ [a] (mod 2) as before. We used an abbreviated notation

χk

l
(τ) ≡∏r

i=1 χki
ℓi

(τ) and Zf
(a,b)(τ, τ̄ ) is defined in (2.59).

Note that χk

l
(τ) here plays the same role as the function fk

l
(τ) in the compact case.

Namely, it appears as the trace over the N = 4 primary states. Again we have an additional

contribution of 1/τ
1/2
2 |η|2 from the non-compact boson along the linear dilaton direction.

Another difference from the compact case is the modular invariant coefficients

N
[0,1]

l,̃l
= N

[1,0]

l,̃l
= N

[1,1]

l,̃l
=

r∏

i=1

δℓi,ℓ̃i
. (3.9)

In the compact case the conformal blocks are related by formulas like

ch
(NS),k
ℓ,m (τ, z) = ch

(NS),k
k−ℓ,m+k+2(τ, z) ,

due to the field identification of the minimal models. In the non-compact case such a

relation is absent for the conformal blocks of the LN̄,K̄-sector, ∝ q∗Θm̄,N̄K̄

θ[α]

η3
, giving rise

to the relatively simple coefficients (3.9).

Here we would like to give some comments on the non-compact mirrorfold model.

• As in the compact fiber case, these string vacua are not supersymmetric, and we can

likewise examine the tachyonic instability. A slight difference from the compact case

is the existence of mass gap K̄
4N̄

. We find

h − 1

2
= −1

2
+ minℓ1,...,ℓr

[
r∑

i=1

ht
ℓi

]
+

(
1

8
+

K̄

4N̄

)
+

R2

4
. (3.10)

Using the criticality condition (3.2), we again reach the evaluation

h − 1

2
≥ −1

4
+

R2

4
. (3.11)

Therefore, we have no tachyonic instability as long as R > 1. However, there exists a

crucial difference from the compact case: now the graviton modes are decoupled from
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the physical Hilbert space, implying that the radius R becomes non-normalizable.

Thus we should regard it as a parameter of the theory rather than a dynamical

modulus. There could still exist normalizable closed string moduli corresponding

to the massless matter rep. D(NS)
1/2 of N = 4 SCA (see [12, 13] for more details).

However, the corresponding marginal deformations do not affect the mass square of

the winding tachyon (3.11), because they must preserve the N = 4 superconformal

symmetry. We thus conclude that these non-supersymmetric string vacua are stable

at the level of perturbative string, as long as R is chosen to be greater than the

self-dual radius.

• For the simplest case Mfiber = [MN−2 ⊗ LN,1]/ZN , which describes the ALE space

of AN−1-type [21], we obtain

Zu(τ, τ̄)

V
=

1

4

∑

α,α̃

ǫ(α)ǫ(ᾱ)Z2R(τ, τ̄ )ZSU(2)k
(τ, τ̄ ) · 1

τ2
2 |η|8

(
θ[α]

η

)4(θ[α̃]

η

)4

, (3.12)

Zt(τ, τ̄ )

V
=

1

4

∑

a∈2Z+1
or b∈2Z+1

ZR,(a,b)(τ, τ̄ )
1

τ2
2 |η|8

∑

ℓ

χk
ℓ, [[a],[b]](τ)χk

ℓ, [[a],[b]](τ)Ẑf
(a,b)(τ, τ̄ ) , (3.13)

where the free fermion part is written as

Ẑf
(a,b)(τ, τ̄) =





∣∣∣∣
(

θ3
η

)3
θ4
η − (−1)

a
2

(
θ4
η

)3
θ3
η

∣∣∣∣
2

, (a ∈ 2Z , b ∈ 2Z + 1) ,
∣∣∣∣
(

θ3
η

)3
θ2
η − (−1)

b
2

(
θ2
η

)3
θ3
η

∣∣∣∣
2

, (a ∈ 2Z + 1 , b ∈ 2Z) ,
∣∣∣∣
(

θ4
η

)3
θ2
η + i(−1)

a+b
2

(
θ2
η

)3
θ4
η

∣∣∣∣
2

, (a ∈ 2Z + 1 , b ∈ 2Z + 1) .

(3.14)

To derive (3.12) we have used the familiar branching relation for the N = 2 minimal

characters (A.5), (A.8). We also note

∑

ℓ

χk
ℓ, [[a],[b]](τ)χk

ℓ, [[a],[b]](τ) =
∑

ℓ

χ
SU(2)k

ℓ, (a,b) (τ)χ
SU(2)k

ℓ, (a,b) (τ) , (3.15)

where the R.H.S is written in terms of the twisted SU(2)k characters (C.1). 11 This is

consistent with the fact that σmirror is now interpretable as the (eiπK3
0 , eiπ eK1

0 )-twisting

in the SU(2) supersymmetric WZW model of level N ≡ k+2, where Ka are the (total)

SU(2)-currents, if recalling [21]

[MN−2 ⊗ LN,1]/ZN
∼= Rφ × SU(2)N .

Obviously, the model defined by (3.12), (3.13) is regarded as a supersymmetric ana-

logue of the SU(2) T-fold considered in [6]. In this case the interpolation between

σN=4
1 and σN=4

3 is exceptionally realized as an inner automorphism.

11It is important to notice that
˛̨
˛χSU(2)k

ℓ, (a,b) (τ )
˛̨
˛
2

is Z2-periodic with respect to a, b, even though the chiral

part χ
SU(2)k

ℓ, (a,b) (τ ) breaks that periodicity due to an extra phase factor. Therefore, (3.15) is a consistent

relation.
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3.2 SUSY vacua: asymmetric modular invariants

In contrast to the compact fiber case, the second candidate of the mirror-involution (2.20)

turns out to yield consistent mirrorfolds, as we shall demonstrate below. We denote the

involution of (2.20) as σ̂mirror in order to distinguish it from the first one. Since σ̂mirror

acts on the N = 4 SCA as (1, σN=4
1,R ), the resultant partition function will provide an

asymmetric modular invariant. What differs crucially from the compact models is that we

include only the massive representations. The massive characters possess simpler modular

properties that makes an asymmetric modular invariant possible.

The model is described as follows. The untwisted sector has the same partition function

(3.6). The partition function in the twisted sector is given as

Zt(τ, τ̄) =
1

4

∑

a∈2Z+1
or b∈2Z+1

ZR,(a,b)(τ, τ̄ )
1

τ2
2 |η|8

∑

l

χk

l, [[a],[b]](τ)χk

l, [[a],[b]](τ)Ẑf,SUSY
(a,b) (τ, τ̄ ) . (3.16)

The free fermion part is now written as

Ẑf,SUSY
(a,b) (τ, τ̄ ) =

[(
θ3

η

)4

−
(

θ4

η

)4

−
(

θ2

η

)4
]
·
(

θ · θ[a,b]

η2

)
G(a,b)(τ) , (3.17)

where G(a,b)(τ) is defined in (2.61), and we used abbreviation,

θ · θ[a,b]

η2
≡





θ3θ4
η2 , (a ∈ 2Z, b ∈ 2Z + 1) ,

θ2θ3
η2 , (a ∈ 2Z + 1, b ∈ 2Z) ,

θ4θ2
η2 , (a ∈ 2Z + 1, b ∈ 2Z + 1) .

(3.18)

More explicitly,

Ẑf,SUSY
(a,b) (τ, τ̄ )

=





e
iπ
4

ab
[(

θ3
η

)4
−
(

θ4
η

)4
−
(

θ2
η

)4]
·
[(

θ3
η

)3
θ4
η −(−1)

a
2

(
θ4
η

)3
θ3
η

]
, (a ∈ 2Z, b ∈ 2Z + 1) ,

e−
iπ
4

ab
[(

θ3
η

)4
−
(

θ4
η

)4
−
(

θ2
η

)4]
·
[(

θ3
η

)3
θ2
η −(−1)

b
2

(
θ2
η

)3
θ3
η

]
, (a ∈ 2Z + 1, b ∈ 2Z) ,

−e−
iπ
4

ab
[(

θ3
η

)4
−
(

θ4
η

)4
−
(

θ2
η

)4]
·
[(

θ4
η

)3
θ2
η +i(−1)

a+b
2

(
θ2
η

)3
θ4
η

]
,(a ∈ 2Z+1, b ∈ 2Z+1).

(3.19)

At first glance, (3.19) might appear inconsistent with unitarity due to phase factors de-

pending on winding numbers a, b. In a unitary theory the torus partition function has to

be real when τ = iτ2 (i.e. Re τ = 0). We note that, when τ = iτ2,

ZR,(a,b)(τ, τ̄ ) = ZR,(a,−b)(τ, τ̄ ) , Ẑf,SUSY
(a,b) (τ, τ̄) = Ẑf,SUSY

(a,−b) (τ, τ̄) , (3.20)

so the total partition function is indeed real when τ = iτ2, after summing over a, b. Hence

there is no inconsistency with unitarity.

In these models the left-movers are expanded by the N = 4 massive characters with

no twisting, which contribute as
(

θ[α]

η

)2
in the partition sum. The right-moving chiral
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blocks are twisted by σN=4
1 , so the models are interpreted as mirrorfolds. Recall that the

twisted characters contribute to the free fermion part as
θ·θ[a,b]

η2 . The space-time SUSY is

achieved by the standard GSO projection acting only on the left-mover, which preserves 8

supercharges.

The model is free from any tachyonic instability in these supersymmetric mirrorfolds,

as it should. If we only look at the right-mover, it might seem possible to have winding

tachyon modes (belonging to the a ∈ 2Z + 1-sectors), similarly to the previous argument

in the compact case. However, this does not happen because such string excitations never

satisfy the level matching condition and the physical Hilbert space does not include them.

3.3 Comments on D-branes: breakdown of the space-time SUSY

Finally, we mention some interesting features of D-branes in these supersymmetric mirror-

folds, although detailed studies on D-branes will be left to our future work.

A remarkable fact is that all D-branes in these string vacua are non-BPS. Recall that

the space-time supercharges only come from the left-mover, so no boundary state can

preserve the space-time SUSY. In other words, adding any D-brane breaks the space-time

SUSY completely.

A typical boundary state describing a D-brane in these vacua has the form

|B〉 =
1 + σ̂mirror ⊗ T2πR√

2
|B〉0 , (3.21)

where |B〉0 is a boundary state in the ‘parent theory’ K3×S1
2R. As just mentioned, adding

this brane breaks the space-time SUSY, so we expect to have open string tachyons which

would lead to an IR instability of this vacuum.

Let us briefly discuss whether the cylinder amplitude such as 〈B|e−πsH(c) |B〉 (H(c) is

the closed string Hamiltonian) gives rise to an IR instability. After taking account of the

contribution from the flat space-time and summing over spin structures, the term with

no insertion of σ̂mirror ⊗ T2πR provides a vanishing open string amplitude, because the

GSO projection correctly acts on it. However, this is not the case for the term in which

σ̂mirror ⊗T2πR is inserted, due to the lack of GSO projection in the open string channel. It

is not difficult to see that the NS sector yields the leading contribution to the non-SUSY

piece of the open channel amplitude. It would look like (q = e−2πt, t ≡ 1/s)

Zcyl,(NS)(it) ∼
∫ ∞

0
dp
∑

I

∑

n∈ 1
2

Z≥0

ρI(p)cI,nq
p2

2
+hI+ K̄

4N̄
+n− 1

8
2

θ4(it)

× [sectors other than K3] , (3.22)

with some non-trivial density function12 ρI(p) and coefficients cI,n ∈ Z≥0 determined from

the boundary wave function of |B〉0. The relevant term contributes to the lightest open

string mode as hmin = K̄
4N̄

+ 1
8 . Here, the contribution 1/8 is due to the twisted character

χ[1,0](p; it) = q
p2

2
2

θ4(it) , (with h = p2

2 + 1
4). When the brane is localized along the base

12In the simple case of ALE fiber, the density ρI(p) is explicitly calculated in [22]. See also [23].
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circle, we also have winding energy of open strings R2 originating from the T2πR insertion,

whereas no more contribution when the brane is wrapped around the base.

To summarise,

• D-branes localized along the base: The open string mass squared behaves as

h − 1

2
≥ K̄

4N̄
− 3

8
+ R2 . (3.23)

Hence the vacuum is IR stable as long as R > Rc ≡
√

3
8 − K̄

4N̄
, whereas unstable if

R < Rc.

• D-branes wrapped around the base: The open string mass squared behaves as

h − 1

2
≥ K̄

4N̄
− 3

8
. (3.24)

The vacuum is always IR unstable. (Note that K̄
4N̄

≤ 1
8 holds because of the criticality

condition (3.2).)

Again R is not a normalizable modulus, and any normalizable moduli inherited from both

closed and open string modes do not affect the above evaluation of the lightest open string

mass.

4. Discussions

In this paper we have studied a class of non-geometric backgrounds of superstring theory

defined with the twisting by the mirror transformation on a K3 space which we call ‘mir-

rorfolds’. We have mainly elaborated on how we can construct modular invariant models

that describe mirrorfolds. We have also discussed possible instability caused by winding

tachyon condensations. To achieve modular invariance, it has been crucial to carefully fix

the action of the mirror-involution on the N = 4 primary states.

It would be a little surprising that we have several significant distinctions between

the compact and the non-compact models. As we have demonstrated, supersymmetric

mirrorfolds can exist only in the non-compact models in which gravity decouples. We have

also found that the compact mirrorfolds are always unstable due to the tachyonic modes

wound around the base circle. From the viewpoints of representation theory of N = 4

SCA, the difference of these two theories originates from the modular properties of the

irreducible characters of the N = 4 SCA. The graviton character, which only appears in

the compact models, has complicated modular properties that makes possibility of modular

invariance so restricted compared with the non-compact models.

A possible future direction related to the present work would be to study D-branes

in these vacua. As we have already mentioned (see the second comment at the end of

section 2), the phase ambiguity of σmirror has not been completely removed. This would

be important when working with the D-brane spectrum, although it was immaterial for

the construction of modular invariant partition functions. In particular, how the Cardy

conditions restrict this phase ambiguity is an interesting issue to study.

– 24 –



J
H
E
P
0
2
(
2
0
0
8
)
0
6
5

It is also interesting to compare the analysis given in this paper with models in which

the K3-fibers are realized as orbifolds T 4/Γ, where Γ is some discrete subgroup of SU(2) ⊂
SO(4) acting on T 4. As is familiar [16], some of Gepner points are also interpretable as

orbifolds of T 4, and it will be anticipated that the T-fold construction works for those

orbifold models. It would be non-trivial, however, whether such a T-folding is equivalent

with the ‘mirrorfolding’ argued in this paper, or how these two should be related.
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A. Some conventions and notations

In this appendix we collect formulae frequently used in the paper. We use modular param-

eters q ≡ e2πiτ , y ≡ e2πiz and theta functions defined by

θ1(τ, z) = i

∞∑

n=−∞

(−1)nq(n−1/2)2/2yn−1/2 ≡ 2 sin(πz)q1/8
∞∏

m=1

(1−qm)(1−yqm)(1−y−1qm),

θ2(τ, z) =

∞∑

n=−∞

q(n−1/2)2/2yn−1/2 ≡ 2 cos(πz)q1/8
∞∏

m=1

(1 − qm)(1 + yqm)(1 + y−1qm),

θ3(τ, z) =
∞∑

n=−∞

qn2/2yn ≡
∞∏

m=1

(1 − qm)(1 + yqm−1/2)(1 + y−1qm−1/2),

θ4(τ, z) =

∞∑

n=−∞

(−1)nqn2/2yn ≡
∞∏

m=1

(1 − qm)(1 − yqm−1/2)(1 − y−1qm−1/2).

(A.1)

We also use

Θm,k(τ, z) =
∞∑

n=−∞

qk(n+ m
2k

)2yk(n+ m
2k

), (A.2)

and the Dedekind function

η(τ) = q1/24
∞∏

n=1

(1 − qn). (A.3)

We abbreviate as θi ≡ θi(τ, 0) (θ1 ≡ 0), Θm,k(τ) ≡ Θm,k(τ, 0) when no confusion arises.

The character of SU(2)k with spin ℓ/2 (0 ≤ ℓ ≤ k) is

χ
SU(2)k

ℓ (τ, z) =
Θℓ+1,k+2(τ, z) − Θ−ℓ−1,k+2(τ, z)

Θ1,2(τ, z) − Θ−1,2(τ, z)
. (A.4)

The branching relation corresponding to the coset construction of the N = 2 minimal

models SU(2)k×U(1)2
U(1)k+2

is given by

χ
SU(2)k

ℓ (τ, w)Θs,2(τ, w − z) =
∑

m∈Z2(k+2)

χℓ,s
m (τ, z)Θm,k+2

(
τ, w − 2z

k + 2

)
. (A.5)
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Here,

χℓ,s
m (τ, z) =

∑

r∈Zk

c
(k)
ℓ,m−s+4r(τ)Θ2m+(k+2)(−s+4r),2k(k+2)

(
τ,

z

k + 2

)
, (A.6)

s ∈ Z4, and c
(k)
ℓ,m(τ) are the level k string functions defined by

χ
SU(2)k

ℓ (τ, z) =
∑

m∈Z2k

c
(k)
ℓ,m(τ)Θm,k(τ, z) . (A.7)

The N = 2 minimal model characters are related to χℓ,s
m as

ch
(NS),k
ℓ,m (τ, z) ≡ Tr

HNS
ℓ,m

qL0−ĉ/8yJ0 = χℓ,0
m (τ, z) + χℓ,2

m (τ, z) ,

ch
( fNS),k
ℓ,m (τ, z) ≡ Tr

HNS
ℓ,m

(−1)F qL0−ĉ/8yJ0 = χℓ,0
m (τ, z) − χℓ,2

m (τ, z) ,

ch
(R),k
ℓ,m (τ, z) ≡ Tr

HR
ℓ,m

qL0−ĉ/8yJ0 = χℓ,1
m (τ, z) + χℓ,−1

m (τ, z) ,

ch
(eR),k
ℓ,m (τ, z) ≡ Tr

HR
ℓ,m

(−1)F qL0−ĉ/8yJ0 = χℓ,1
m (τ, z) − χℓ,−1

m (τ, z) . (A.8)

The level 1 (small) N = 4 characters are given as [17]

massive characters:

chN=4,(NS)(h; τ, z) = qh− 1
8
θ3(τ, z)2

η(τ)3
, (for C(NS)

h ) . (A.9)

massless characters:

ch
N=4,(NS)
0

(
ℓ =

1

2
; τ, z

)
= q−1/8

∑

n∈Z

1

1 + yqn−1/2
q

n2

2 yn θ3(τ, z)

η(τ)3
, (for D(NS)

1/2 ) , (A.10)

ch
N=4,(NS)
0 (ℓ = 0; τ, z) = q−1/8

∑

n∈Z

yqn−1/2 − 1

1 + yqn−1/2
q

n2

2 yn θ3(τ, z)

η(τ)3

= q−1/8
∑

n∈Z

(1 − q)q
n2

2
+n− 1

2 yn+1

(1 + yqn+1/2)(1 + yqn−1/2)

θ3(τ, z)

η(τ)3
, (for D(NS)

0 ) .

(A.11)

The following identity is often useful:

chN=4,(NS)(h; τ, z) = qh

(
ch

N=4,(NS)
0 (ℓ = 0; τ, z) + 2ch

N=4,(NS)
0

(
ℓ =

1

2
; τ, z

))
. (A.12)

An important property of the N = 4 characters is that they decompose into spectrally

flowed N = 2 irreducible characters [17],

chN=4,(NS)(h; τ, z) =
∑

n∈Z

qn2
y2nchN=2,(NS)(h,Q = 0; τ, z + nτ) ,

ch
N=4,(NS)
0

(
ℓ =

1

2
; τ, z

)
=
∑

n∈Z

qn2
y2nch

N=2,(NS)
M (Q = 1; τ, z + nτ) ,

ch
N=4,(NS)
0 (ℓ = 0; τ, z) =

∑

n∈Z

qn2
y2nch

N=2,(NS)
G (τ, z + nτ) , (A.13)

where the three types of N = 2 irreducible characters at ĉ = 2 are given as
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massive characters:

chN=2,(NS)(h,Q; τ, z) = qh− 1
8 yQ θ3(τ, z)

η(τ)3
, (A.14)

massless matter characters:

ch
N=2,(NS)
M (Q; τ, z) = q

|Q|
2

− 1
8 yQ 1

1 + ysgn(Q)q1/2

θ3(τ, z)

η(τ)3
, (A.15)

graviton character:

ch
N=2,(NS)
G (τ, z) = q−1/8 (1 − q)q−1/2y

(1 + yq1/2)(1 + yq−1/2)

θ3(τ, z)

η(τ)3
. (A.16)

The R-sector characters are obtained by the 1/2-spectral flow. Namely,

chN=4,(R)(h; τ, z) = q
1
4 y chN=4,(NS)

(
h − 1

4
; τ, z +

τ

2

)
, (for C(R)

h ) ,

ch
N=4,(R)
0 (ℓ; τ, z) = q

1
4 y ch

N=4,(NS)
0

(
1

2
− ℓ; τ, z +

τ

2

)
, (for D(R)

ℓ ) . (A.17)

For the convenience of readers we also reproduce the modular transformation formulas

of the N = 4 characters at level 1 [17]. We only give the NS sector results as the others

are readily obtained by spectral flows.

(i) massive representations

chN=4,(NS)

(
h=

p2

2
+

1

8
;−1

τ
,
z

τ

)
=2eiπ 2z2

τ

∫ ∞

0
dp′ cos(2πpp′)chN=4,(NS)

(
h=

p′2

2
+

1

8
; τ, z

)
,

(A.18)

(ii) massless representations

ch
N=4,(NS)
0

(
ℓ = 0;−1

τ
,
z

τ

)
= eiπ 2z2

τ

{
2ch

N=4,(NS)
0

(
ℓ =

1

2
; τ, z

)

+2

∫ ∞

0
dp′ sinh(πp′) tanh(πp′) chN=4,(NS)

(
h =

p′2

2
+

1

8
; τ, z

)}
, (A.19)

ch
N=4,(NS)
0

(
ℓ =

1

2
;−1

τ
,
z

τ

)
= eiπ 2z2

τ

{
−ch

N=4,(NS)
0 (ℓ =

1

2
; τ, z)

+

∫ ∞

0
dp′

1

cosh(πp′)
chN=4,(NS)

(
h =

p′2

2
+

1

8
; τ, z

)}
. (A.20)

Note the appearance of both continuous and discrete terms in the massless formulas (A.19)

and (A.20). This feature is characteristic to the massless representations.
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B. Twisted characters of N = 2 SCFT

The twisted N = 2 characters are defined with respect to Z2-autormorphism of the N = 2

SCA,

σN=2 : T −→ T, J −→ −J, G± −→ G∓ . (B.1)

We denote the twisted characters as ch
(α)
[S,T ], where α are the spin structures, and S, T ∈

Z2 signify the spatial and temporal boundary conditions associated with the σN=2-twist

(S, T = 1 means twisted, and S, T = 0 means no twist). As the σN=2-twist projects

out states with non-vanishing U(1)-charges, the conformal weights are the only quantum

numbers relevant in the twisted sectors. It is easy to verify the following identities (see

e.g. [18]):

ch
(NS)
[0,1]

(τ) = ch
( fNS)
[0,1]

(τ) , ch
(NS)
[1,0]

(τ) = ch
(R)
[1,0]

(τ) , ch
( fNS)
[1,1]

(τ) = ch
(R)
[1,1]

(τ) , (B.2)

ch
(R)
[0,1](τ) = ch

(eR)
[0,1](τ) , ch

( fNS)
[1,0] (τ) = ch

(eR)
[1,0](τ) , ch

(NS)
[1,1] (τ) = ch

(eR)
[1,1](τ) . (B.3)

We denote the twisted characters in the first line (B.2) as χ[0,1](τ), χ[1,0](τ) and χ[1,1](τ). To

find their explicit forms, it is easiest to first evaluate the characters χ[0,1] ≡ Tr[σN=2qL0−
ĉ
8 ]

and then modular transform them to the other boundary conditions. It is obvious that

only neutral (Q = 0) representations that are invariant under σN=2-action can contribute

to these characters. For any N = 2 SCFT with ĉ > 1, they are written in simple forms,

χ[0,1](p; τ) =
2q

p2

2

θ2(τ)
,

(
h =

p2

2
+

ĉ − 1

8

)
,

χ[1,0](p; τ) =
2q

p2

2

θ4(τ)
,

(
h =

p2

2
+

ĉ

8

)
,

χ[1,1](p; τ) =
2q

p2

2

θ3(τ)
,

(
h =

p2

2
+

ĉ

8

)
. (B.4)

For the second line (B.3), only the representations that are kept invariant under σN=2

can again contribute to ch
(R)
[0,1] (or ch

(eR)
[0,1]). Most of such representations, however, yield

vanishing characters due to fermionic zero-modes. There only exists one exception: the

representations generated by Ramond ground states (h = ĉ
8) with Q = 0. In that case,

oscillator parts cancel out (as in Witten index), and we simply obtain

ch
(R)
[0,1]

(
h=

ĉ

8
, Q=0; τ

)(
=ch

(eR)
[0,1]

(
h=

ĉ

8
, Q = 0; τ

))
=±

∞∏

n=1

(1 + qn)(1 − qn)

∞∏

n=1

(1 + qn)(1 − qn)

=±1. (B.5)

Here we have a sign ambiguity depending on the σN=2-action on Ramond ground states.

The characters of the other boundary conditions in (B.3) are easily obtained by modular

transformations; they are merely equal ±1.
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The twisted characters of the minimal models Mk are more involved. The character

formulas corresponding to (B.2) are summarized in [18] (based on [24 – 27]):

χk
ℓ [0,1](τ) =





2

θ2(τ)

(
Θ2(ℓ+1),4(k+2)(τ) + (−1)kΘ2(ℓ+1)+4(k+2),4(k+2)(τ)

)
(ℓ : even),

0 (ℓ : odd).

χk
ℓ [1,0](τ) =

1

θ4(τ)

(
Θℓ+1− k+2

2
,k+2(τ) − Θ−(ℓ+1)− k+2

2
,k+2(τ)

)

=
1

θ4(τ)

(
Θ2(ℓ+1)−(k+2),4(k+2)(τ) + Θ2(ℓ+1)+3(k+2),4(k+2)(τ)

−Θ−2(ℓ+1)−(k+2),4(k+2)(τ) − Θ−2(ℓ+1)+3(k+2),4(k+2)(τ)
)

,

χk
ℓ [1,1](τ) =

1

θ3(τ)

(
Θ2(ℓ+1)−(k+2),4(k+2)(τ) + (−1)kΘ2(ℓ+1)+3(k+2),4(k+2)(τ)

+(−1)ℓΘ−2(ℓ+1)−(k+2),4(k+2)(τ) + (−1)k+ℓΘ−2(ℓ+1)+3(k+2),4(k+2)(τ)
)

. (B.6)

The conformal dimensions of the ground states corresponding to the first characters are

h = hℓ ≡
ℓ(ℓ + 2)

4(k + 2)
, (B.7)

(which coincide with those for the SU(2)k primaries). The ground states of the second and

third ones have dimensions

h = ht
ℓ ≡

k − 2 + (k − 2ℓ)2

16(k + 2)
+

1

16
. (B.8)

The states characterised by (B.8) are interpreted as the product of the twist field in the

U(1)-sector and the “C-disorder field” [25] in the Zk-parafermion theory [28]. Note that

χk
k−ℓ [1,0] = χk

ℓ [1,0], χk
k−ℓ [1,1] = χk

ℓ [1,1]. Due to these relations the corresponding fields are

identified, leaving only ℓ = 0, 1, . . . ,
[

k
2

]
as independent primary fields.

The modular transformations of the twisted N = 2 characters are

χk
ℓ [0,1](τ + 1) = e

2πi
“
hℓ−

k
8(k+2)

”

χk
ℓ [0,1](τ) , χk

ℓ [0,1]

(
−1

τ

)
=

k∑

ℓ′=0

(−1)ℓ/2Sℓ,ℓ′ χ
k
ℓ′ [1,0](τ),

χk
ℓ [1,0](τ + 1) = e

2πi
“
ht

ℓ−
k

8(k+2)

”

χk
ℓ [1,1](τ) , χk

ℓ [1,0]

(
−1

τ

)
=

k∑

ℓ′=0

Sℓ,ℓ′(−1)ℓ
′/2 χk

ℓ′ [0,1](τ) ,

χℓ [1,1](τ + 1) = e
2πi

“
ht

ℓ−
k

8(k+2)

”

χk
ℓ [1,0](τ) , χk

ℓ [1,1]

(
−1

τ

)
=

k∑

ℓ′=0

Ŝℓ,ℓ′ χ
k
ℓ′ [1,1](τ) . (B.9)

Here Sℓ,ℓ′ ≡
√

2
k+2 sin

(
π(ℓ+1)(ℓ′+1)

k+2

)
is the modular S-matrix of the SU(2) WZW model at

level k, and Ŝℓ,ℓ′ ≡ e
πi
2 (ℓ+ℓ′− k

2 ) Sℓ,ℓ′.

Finally, we mention the remaining minimal model characters appearing in (B.3). In

contrast to the ĉ > 1 case, these characters always vanish. For instance, let us pick up the

boundary condition {R, [0, 1]}. Only the representations generated by doubly degenerated
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primary states |ℓ,m, s〉 = |ℓ, 0,±1〉 (ℓ ∈ 2Z + 1) can contribute, but the trace over them

vanishes because σN=2 acts as

σN=2 : |ℓ, 0,±1〉 7−→ |ℓ, 0,∓1〉 .

C. Twisted SU(2)k characters

The twisted characters of the SU(2)k current algebra are generally written as

χ
SU(2)k

ℓ,(a,b) (τ, z) ≡ e2πi k
4
abq

k
4
a2

y
k
2
a χ

SU(2)k

ℓ (τ, z + aτ + b) , (C.1)

where a and b parameterize the spatial and temporal boundary conditions. This is a special

case of more general formulas for the twisted characters of affine Kac-Moody algebras [29]

(up to phase factors). Especially, (a, b) = (0, 1/2) corresponds to temporal insertion of

eiπJ3
0 within the trace and by direct calculations we may show that it is related to the

twisted N = 2 characters by,13

χ
SU(2)k

ℓ,(0,1/2)(τ, 0) = (−1)ℓ/2χk
ℓ,[0,1](τ) . (C.2)

(Both χ
SU(2)k

ℓ,(0,1/2)(τ, 0) and χk
ℓ,[0,1](τ) vanish when ℓ is odd, so the factor (−1)ℓ/2 entails no

phase ambiguity.) Performing modular transformations, we further obtain

χ
SU(2)k

ℓ,(1/2,0)(τ, 0) = χk
ℓ,[1,0](τ) ,

χ
SU(2)k

ℓ,(1/2,1/2)(τ, 0) = e2πi k
16 e−

iπ
2

ℓχk
ℓ,[1,1](τ) . (C.3)

The modular property of the twisted character χ
SU(2)k

ℓ,(a,b) (τ, z) is simply written as

χ
SU(2)k

ℓ,(a,b) (−1/τ, z/τ) = eiπ k
2

z2

τ

k∑

ℓ′=0

Sℓ,ℓ′ χ
SU(2)k

ℓ′,(b,−a) (τ, z) , (C.4)

χ
SU(2)k

ℓ,(a,b) (τ + 1, z) = e
2πi

“
ℓ(ℓ+2)
4(k+2)

− k
8(k+2)

”

χ
SU(2)k

ℓ,(a,a+b)(τ, z) . (C.5)

D. Complete classification of twisted N = 4 characters

In this appendix we present a complete classification of the twisted N = 4 characters.

• σN=4
1 -twist. As we already discussed, a major part of the σN=4

1 -twisted characters

are exhibited in (2.29). We thus focus on the remaining sectors. It is enough to

consider the {R, [0, 1]} ({R̃, [0, 1]}) sector, which is the trace over each Ramond

13Since χ
SU(2)k

ℓ,(a/2,b/2)(τ, 0) and χk
ℓ,[[a],[b]](τ ) ([a] ∈ Z2 is defined by a ≡ [a] mod 2) differ only by a phase

factor, χk
ℓ,[[a],[b]](τ ) may also be regarded as twisted SU(2)k characters. In fact, the same character functions

χk
ℓ,[[a],[b]](τ ) are employed in [6] to analyse twisted representations that display manifest Z2-periodicities in

the twist parameters. In that paper, formulas involving the angular variable dependence (z) associated

with the SU(2) zero-modes are presented. In the N = 2 case the z-dependence is irrelevant because the

N = 2-involution σN=2 removes the zero-mode of the U(1)-current J .
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representation with σN=4
1 ((−1)F σN=4

1 ) inserted. The remaining ones {ÑS, [1, 0]},
{NS, [1, 1]} ({R̃, [1, 0]}, {R̃, [1, 1]}) are generated by modular transformations. As

already mentioned, σN=4
1 boils down to the σN=2-twist and the spectral-flowed sectors

do not contribute. Thus we find

Tr
C
(R)
h

[
σN=4

1 qL0−
1
4

]
=Tr

D
(R)
1/2

[
σN=4

1 qL0−
1
4

]
=0 , Tr

D
(R)
0

[
σN=4

1 qL0−
1
4

]
=±1. (D.1)

We also obtain the same results for the {R̃, [0, 1]}-characters. It is trivial to modular

transform these results to obtain the remaining ones.

• σN=4
3 -twist. The equivalence of twisted character formulas for σN=4

3 and σN=4
1 is

anticipated; we shall verify this explicitly.

Again we focus on the {R, [0, 1]} and {R̃, [0, 1]} sectors, since the classification (2.29)

has been already given. Namely, we examine the trace over each Ramond representa-

tion with the insertion of σN=4
3 (and (−1)F σN=4

3 ), which assigns the phase (−1)n to

the n-th spectral flow sector. For representations C(R)
h , D(R)

1/2 , (C(eR)
h , D(eR)

1/2) we readily

obtain

Tr
C
(R)
h

[
σN=4

3 qL0−
1
4

](
≡Tr

C
(R)
h

[
(−1)F σN=4

3 qL0−
1
4

])
=qh− 3

8
iθ1(τ, 0)θ2(τ, 0)

η(τ)3
=0 ,(D.2)

Tr
D

(R)
1/2

[
σN=4

3 qL0−
1
4

](
≡Tr

D
(R)
1/2

[
(−1)F σN=4

3 qL0−
1
4

])
=q−

1
8
iθ1(τ, 0)θ2(τ, 0)

η(τ)3
=0 , (D.3)

by using (2.22), (2.24) and the 1/2-spectral flow. The one for the representation D(R)
0

is somewhat non-trivial:

Tr
D

(R)
0

[
σN=4

3 qL0−
1
4

]
= ±

∑

n∈Z

(−1)n
q

1
2
n(n+1)

1 + qn

θ2(τ)

η(τ)3
≡ ±1 . (D.4)

(Again we include a sign ambiguity due to the σN=4
3 -action on the vacuum.) The

second equality follows from the identity (e.g. (3.17) in [30])

1
∏∞

n=1(1 + yqn− 1
2 )(1 + y−1qn− 1

2 )
=

q
1
12

η(τ)2

∑

n∈Z

(−1)n
q

1
2
n(n+1)

1 + yqn+ 1
2

, (D.5)

which can be derived from the super boson-fermion correspondence [30, 31].14

On the other hand, if making the (−1)F σN=4
3 -insertion, only the Ramond ground

states can contribute, and it is easy to see

Tr
D

(R)
0

[
(−1)F σN=4

3 qL0−
1
4

]
= ±1 . (D.6)

14More general identities for the level k Appell function Kk(τ, ν, µ) ≡
P

n∈Z

q
k

2
n
2

xkn

1−xyqn , (x ≡ e2πiν , y ≡

e2πiµ) are given in [32, 33]. The k = 1 case [32] is relevant here:

θ3(τ, λ)K1(τ, ν, µ) − θ3(τ, ν)K1(τ, λ, µ) = i
θ3(τ, ν + µ + λ)θ1(τ,−ν + λ)

θ1(τ, ν + µ)θ1(τ, µ + λ)
η(τ )3 ,

from which one can reproduce the identity (D.5) by setting λ = τ+1
2

. Generalization to higher level cases

has been given in [33] (Lemma 2.2).
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In this way we have confirmed the equality of the σN=4
1 - and σN=4

3 -twisted characters

for all the irreducible representations of N = 4 SCA.
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